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ABSTRACT

"~ For a scalar nonlinear parabolic equation in one space dimension with

homogeneous Neumann boundary conditions, criteria are given on the diffusion
coefficient to ensure that the stable equilibrium solutions are constant
functions regardless of the nonlinearities. The Dirichlet problem is also
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Consider the equation
(1) u, = (aux)x + f(u), 0<x<1,
with homogeneous Neumann conditions

(2) u =0 at x=0, x=1,

where a € Cz[O,l] is a positive function and f € CZGR). System (1), (2)
defines a local dynamical system in Hl(O,l) = Wl’z(o,l) (see Henry [8]).
Furthermore, the w-limit set of any bounded orbit is exactly one equilibrium

point; that is, a solution of the equations
(3) (aux)x + f(u) = 0, 0<x<1
(4) ux =0 at x=0, x=1

(see Matano [11], Hale and Massatt [6], Zelenyak [15]).

The first result is the following.

Theorem 1. If a"(x) <0 on [0,1], then every nonconstant equilibrium

solution of (1),(2) is unstable.

For a(x) = c¢ > 0, where c¢ is a constant, this result was proved by
Chafee [2]. Note that the conclusion in the theorem is valid for every function
f. Matano [13] has given an example (1),(2) for which there are stable non-
constant equilibrium solutions. The function f can be chosen to be a cubic
with three simple zeros and the function a is > 1 on intervals [0,a], [8,1]
and < e on [v,8], a<y<$8<h and e 1is sufficiently small. Numerical

examples indicated the same property can occur with a > 1 on [0,a] and < e on




[{B,1] with o < B, These examples show clearly that more work is needed to

determine the optimal conditions on a for the conclusions of the theorem to
hold.

For a more general parabolic equation in several space dimensions in a
bounded domain Q@ and the diffusion coefficients constant, Casten and Holland
[1], Matano [12] have shown that Theorem 1 is true if Q@ is convex. The
authors have had no success in extending this result in a significant wayv with
variable diffusion coefficients. If @ 1is not convex and the diffusion co-
efficients are constants, nonconstant equilibrium solutions can occur (see
Matano [12], Hale and Vegas [7], Vegas [14]) for certain nonlinear functions f.
If the diffusion coefficient in (1) is constant and f is a function of u(-,t),
for example, f(u(x,t)) = g(u(x,t),fla(x)u(x,t)dx), then stable nonequilibrium
solutions can occur (see Chafee [3])? A similar situation was considered in
several space dimensions and nonconvex domains by Keyfitz and Kuiper [9]. For
constant diffusion in (1) and f replaced by s(x)f(u), Fleming [5], (see also
Henry [8]) has considered how the existence of stable nonconstant solutions
depend on s(x). All of these papers should be reconsidered with variable
diffusion.

There is an analogue of Theorem 1 for the Dirichlet problem.

Theorem 2. Consider the equation (1) with Dirichlet boundary conditions

u=0 at x=0, x-=1.

If a"(x) <0 on [0,1] and v(x) is a nonconstant equilibrium solution such

that Ve T 0 at two points in (0,1), then v is unstable.

.




For a(x) = ¢ > 0, this result was proved by Chafee and Infante [4],

Maginu [10]}.

Proof of Theorem 1. If v 1is a solution of (3),(4) and

1, 2
&(¢) = J[aubx - £'(v}¢"1dx,
0

then the first eigenvalue Al of the operator

u =--(aux)x - f'(V)u

is given by

A, = min{g(9) : ¢ € H Yo,1), lel = 1}.
L (0,1)

Furthermore, the equilibrium solution v of (1),(2) is unstable if Al <0
(see, for example, Henry [ 8]). Consequently, it is sufficient to show that
the hypotheses of the theorem imply Al <0 if v 1is not a constant and this
will be the case if we show that dﬂ(avx).< 0 if v 1is not a constant. We

have

&) = j alav ) 17 - £ (v) (av )% 1ax
0
1 1
= Ioaf (v)dx - jof(v)xa avxdx
1 1 1
= I af (v)dx + Jof(v)a(avx)xdx + fof(v)a'avxdx

Jo(avx)xa'(avx)dx
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To compute the last expression, we integrate by parts to obtain

1 1 1
' = - " - ]
I (avx)xa (avx)dx J avxa avxdx J avxa (avx)xdx

0 0 0
and, thus,
1 1 (! 2
1 = . = "
Jo(avx)xa (avx)dx 5 Joa (avx) dx.
Therefore,
p (t 2
d = =+ "
(5) ﬁﬂ(avx) = 3 f a (avx) dx < 0

0
since we have assumed a'" < 0.
1f ﬁﬂ(avx) < 0, then kl < 0 and the solution v is unstable. Thus,

suppose Al > 0. From (5), this implies ﬁﬂTavX) = 0 which implies Al = 0.
Since the first eigenvalue of L 1is simple, there is a ¢ satisfying

Lp=0, ¢_=0 at x=0, x =1, |¢| 5 = 1. Also, &(av ) = 0 implies
L“(0,1) X

there is a constant ¢ such that av = ¢¢ on [0,1]. If c # 0, then v, = 0
at x =0, x=1 and a >0 imply ¢ = 0 at x = 0, x = 1. But this would
imply ¢ = 0 on [0,1] which is a contradiction. Thus, c¢ = 0 and av,_ = 0,

v, T 0 and v = constant. This proves the theorem.

Proof of Theorem 2. Suppose v 1is an equilibrium solution, Ve = 0 at x = a,
x=8, a,8 € (0,1). Then v is an equilibrium solution of the Neumann problem
on the interval [o,B]. As in the proof of Theorem 1, one shows that the first

eigenvalue X, of the linear variational operator is negative if v 1is not a

1

constant. By the characterization of A, as a minimum of the functional &(u),

1
it follows that Al for the Dirichlet problem on [0,1] is negative. This proves

the theorem.
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